NCERT Class 10 Maths Exercise 1.3 (प्रश्नावली 1.3)

प्रश्न 1. सिध्द कीजिए कि $\sqrt{5}$ एक अपरिमेय संख्या है ।

solankimaths.com

solankimaths.com

हल :- माना $\sqrt{5}$ एक परिमेय संख्या है ।

अतः हम दो पूर्णांक a और b के लिए $\sqrt{5} = \frac{a}{b}$;(b \neq 0)(i) लिख सकते हैं ।

जहां a और b में 1 के अतिरिक्त कोई उभयनिष्ठ गुण्नखण्ड नहीं है अर्थात a और b सहअभाज्य हैं।

समीकरण (i) से $\sqrt{5}$ b = a

दोनों पक्षों का वर्ग करने पर $5b^2 = a^2$ (ii)

अतः a², 5 से विभाजित है इसलिए 5, a को भी विभाजित करेगा ।

अत: a = 5c, जहां c कोई पूर्णांक है।

समीकरण (ii) में a = 5c रखने पर

$$5b^2 = 25c^2$$

$$b^2 = 5c^2$$

अर्थात b2, 5 से विभाजित है तो 5, b को भी विभाजित करेगा।

अतः a और b में कम से कम एक उभयनिष्ठ गुणनखण्ड 5 है । परन्तु इससे तथ्य का विरोधाभास प्राप्त होता है कि a और b सहअभाज्य हैं ।

हमें यह विरोधाभास अपनी त्रुटीपूर्ण कल्पना के कारण हुआ है कि $\sqrt{5}$ एक परिमेय संख्या है ।

अतः हम निष्कर्ष निकालते हैं कि √5 एक अपरिमेय संख्या है ।

प्रश्न 2. सिध्द कीजिए कि 3 + $2\sqrt{5}$ एक अपरिमेय संख्या है ।

हल :- माना $3 + 2\sqrt{5}$ एक परिमेय संख्या है ।

अतः हम दो पूर्णांक a और b के लिए $3+2\sqrt{5}=\frac{a}{b}$;(b \neq 0)(i) लिख सकते हैं ।

जहां a और b में 1 के अतिरिक्त कोई उभयनिष्ठ गुण्नखण्ड नहीं है अर्थात a और b सहअभाज्य हैं।

चूंकी 3 +
$$2\sqrt{5}$$
 = $\frac{a}{b}$

$$2\sqrt{5} = \frac{a}{b} - 3$$

$$\sqrt{5} = \frac{1}{2} \left(\frac{a}{b} - 3 \right)$$
 (ii)

 $\frac{1}{2} \left(\frac{a}{b} - 3\right)$ एक परिमेय संख्या है तो समीकरण (ii) से $\sqrt{5}$ भी एक परिमेय संख्या होगी । जबिक हम जानते हैं कि $\sqrt{5}$ एक अपरिमेय संख्या है, जो कि विरोधाभास उत्पन्न करता है ।

हमें यह विरोधाभास अपनी त्रुटीपूर्ण कल्पना के कारण हुआ है, अत: हम निष्कर्ष निकालते हैं कि **3 + 2√5** एक अपरिमेय संख्या है ।

प्रश्न 3. सिध्द कीजिए कि निम्न संख्याएं अपरिमेय हैं -

 $\frac{1}{\sqrt{2}}$ (ii) $7\sqrt{5}$ (iii) 6 + $\sqrt{2}$

हल :- (i) $\frac{1}{\sqrt{2}}$

माना $\frac{1}{\sqrt{2}}$ एक परिमेय संख्या है।

अतः हम दो पूर्णांक a और b के लिए $\frac{1}{\sqrt{2}} = \frac{a}{b}$;(b \neq 0)(i) लिख सकते हैं ।

जहां a और b में 1 के अतिरिक्त कोई उभयनिष्ठ ग्ण्नखण्ड नहीं है अर्थात a और b सहअभाज्य हैं।

समीकरण (i) से $\sqrt{2} = \frac{b}{a}$

$$\sqrt{2}$$
 a = b

दोनों पक्षों का वर्ग करने पर $2a^2 = b^2$ (ii)

अतः b², 2 से विभाजित है इसलिए 2, b को भी विभाजित करेगा ।

अत: b = 2c, जहां c कोई पूर्णांक है।

समीकरण (ii) में b = 2c रखने पर

$$2a^2 = (2c)^2$$

$$2a^2 = 4c^2$$

$$a^2 = 2c^2$$

अर्थात a², 2 से विभाजित है तो 2, a को भी विभाजित करेगा।

जिससे यह स्पष्ट होता है कि a और b में कम से कम एक उभयनिष्ठ गुणनखण्ड 2 है । परन्तु इससे तथ्य का विरोधाभास प्राप्त होता है कि a और b सहअभाज्य हैं ।

हमें यह विरोधाभास अपनी त्रुटीपूर्ण कल्पना के कारण हुआ है कि $\frac{1}{\sqrt{2}}$ एक परिमेय संख्या है ।

अतः हम निष्कर्ष निकालते हैं कि $\frac{1}{\sqrt{2}}$ एक अपरिमेय संख्या है ।

(ii) 7√5

माना $7\sqrt{5}$ एक परिमेय संख्या है ।

अतः हम दो पूर्णांक a और b के लिए $7\sqrt{5} = \frac{a}{b}$;(b \neq 0)(i) लिख सकते हैं ।

जहां a और b में 1 के अतिरिक्त कोई उभयनिष्ठ ग्ण्नखण्ड नहीं है अर्थात a और b सहअभाज्य हैं ।

चूंकी $7\sqrt{5} = \frac{a}{h}$

$$\sqrt{5} = \frac{a}{7b} \qquad \qquad (ii)$$

 $\frac{a}{7b}$ एक परिमेय संख्या है तो समीकरण (ii) से $\sqrt{5}$ भी एक परिमेय संख्या होगी । जबिक हम जानते हैं कि $\sqrt{5}$ एक अपरिमेय संख्या है, जो कि विरोधाभास उत्पन्न करता है ।

हमें यह विरोधाभास अपनी त्रुटीपूर्ण कल्पना के कारण हुआ है, अत: हम निष्कर्ष निकालते हैं कि एक 7√5 अपरिमेय संख्या है ।

(iii)
$$6 + \sqrt{2}$$

माना 6 + √2 एक परिमेय संख्या है।

अतः हम दो पूर्णांक a और b के लिए $6+\sqrt{2}=\frac{a}{b}$;(b $\neq 0$)(i) लिख सकते हैं । जहां a और b में 1 के अतिरिक्त कोई उभयनिष्ठ गुण्नखण्ड नहीं है अर्थात a और b सहअभाज्य हैं । चूंकी $6+\sqrt{2}=\frac{a}{b}$ $\sqrt{2}=\frac{a}{b}-6$ $\sqrt{2}=(\frac{a}{b}-6)$ (ii)

 $(\frac{a}{b}-6)$ एक परिमेय संख्या है तो समीकरण (ii) से $\sqrt{2}$ भी एक परिमेय संख्या होगी । जबिक हम जानते हैं कि $\sqrt{2}$ एक अपरिमेय संख्या है, जो कि विरोधाभास उत्पन्न करता है ।

हमें यह विरोधाभास अपनी त्रुटीपूर्ण कल्पना के कारण हुआ है, अतः हम निष्कर्ष निकालते हैं कि 6 + √2 एक अपरिमेय संख्या है ।

solankimaths.com